
Recursive Backtracking and
Enumeration

What is an example of a game that would be easy
to play if you had the ability to quickly think of all

possible moves/plays?
(pollev.com/cs106bpoll)

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Midterm

real-world
algorithms

Core
Tools

User/client
Implementation

Today’s
question

How can we leverage
backtracking recursion to
solve interesting
problems?

Today’s
topics

1. Review

2. Word Scramble

3. Shrinkable Words

4. Generating Subsets

Previously on CS106B….

● We want to first move the biggest disk over to the destination peg.
● Now we need to move the stack of three from auxiliary to destination.

Towers of Hanoi with n disks

 source auxiliary destination

Use our
existing 3-disk

algorithm!

Elegance (Towers of Hanoi)

void findSolution(int n, char source, char dest,
char aux) {
 if (n == 1) {
 moveSingleDisk(source, dest);
 } else {
 findSolution(n - 1, source, aux, dest);
 moveSingleDisk(source, dest);
 findSolution(n - 1, aux, dest, source);
 }
}

void findSolutionIterative(int n, char source, char dest, char aux) {
 int numMoves = pow(2, n) - 1; // total number of moves necessary

 // if number of disks is even, swap dest and aux posts
 if (n % 2 == 0) {
 char temp = dest;
 dest = aux;
 aux = temp;
 }

 Stack<int> srcStack;
 for (int i = n; i > 0; i--) {
 srcStack.push(i);
 }
 cout << srcStack << endl;
 Stack<int> destStack;
 Stack<int> auxStack;

 // Determine next move based on how many moves have been made so far
 for (int i = 1; i <= numMoves; i++) {
 switch (i % 3) {
 case 1:
 if (srcStack.isEmpty() ||
 (!destStack.isEmpty() && srcStack.peek() > destStack.peek())) {
 srcStack.push(destStack.pop());
 moveSingleDisk(dest, source);
 } else {
 destStack.push(srcStack.pop());
 moveSingleDisk(source, dest);
 }
 break;
 case 2:
 if (srcStack.isEmpty() ||
 (!auxStack.isEmpty() && srcStack.peek() > auxStack.peek())) {
 srcStack.push(auxStack.pop());
 moveSingleDisk(aux, source);
 } else {
 auxStack.push(srcStack.pop());
 moveSingleDisk(source, aux);
 }
 break;
 case 0:
 if (destStack.isEmpty() ||
 (!auxStack.isEmpty() && destStack.peek() > auxStack.peek())) {
 destStack.push(auxStack.pop());
 moveSingleDisk(aux, dest);
 } else {
 auxStack.push(destStack.pop());
 moveSingleDisk(dest, aux);
 }
 break;
 }
 }
}

Elegance

Allows us to write clean and concise code

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

Finding a number in a sorted list with BINARY
SEARCH

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

● Leverage the structure in sorted data to
eliminate half of the search space every
time when searching for an element

○ Only do a direct comparison with the
middle element in the list

○ Recursively search the left half if the
element is less than the middle

○ Recursively search the right half if the
element is greater than the middle

Finding a number in a sorted list with BINARY
SEARCH

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

● Binary search has logarithmic Big-O: O(log N)
○ Enables efficient performance of sets and maps

Efficiency

Allows us to accomplish better runtimes when solving
problems.

Generating coin sequences

● Let's say that you're playing a game that involves flipping a coin a certain
number of times in a row. Your success in the game depends on the exact
sequence of "heads" and "tails" that you get.

● In a different version of the game, you instead get three flips of the coin on
your turn. What are all the possible ways that your turn could go?

How do we know that we got all the possibilities? How do we avoid repeats?

HHH HHT HTH HTT THH THT TTH TTT

Takeaways: recursive backtracking + decision trees
● Unlike our previous recursion paradigm in which a solution gets built up as

recursive calls return, in backtracking our final outputs occur at our base cases
(leaves) and get built up as we go down the decision tree.

Dynamic (Coin Sequences + Decision Trees)

● The height of the tree corresponds to
the number of decisions we have to
make. The width at each decision
point corresponds to the number of
options at each decision.

Dynamic (Coin Sequences + Decision Trees)

● The height of the tree corresponds to
the number of decisions we have to
make. The width at each decision
point corresponds to the number of
options at each decision.

● To exhaustively explore the entire
search space, we must try every
possible option for every possible
decision.

Dynamic

Allows us to solve problems that are hard to solve
iteratively

recursioniteration

Summary

Two types of recursion

● Is this word a palindrome?
● How many students are in this row?
● How can I draw a nth-order Cantor set?
● What is n factorial?
● Solve Towers of Hanoi for 5 disks?
● Find a number in a list using binary search?

● What are all the possible sequences
for coin flips if you flip n times?

● What are all the possible ways to roll a
die n times?

● What are all the possible ways to
rearrange the letters in the word
“saki”?

● What are all the possible permutations
(ways to rearrange) for the words in “E
Pluribus Unum”?

● What are all the possible subsets of
Trip, Kylie, and Jenny?

Two types of recursion

● Is this word a palindrome?
● How many students are there in this row?
● How can I draw a nth-order Cantor set?
● What is 100! Factorial?
● Solve Towers of Hanoi for 5 disks?
● Find a number in a list using binary search?

● What are all the possible sequences for
coin flips if you flip n times?

● What are all the possible ways to
rearrange the letters in the word “saki”?

● What are all the possible subsets of Trip,
Kylie, and Jenny?

Backtracking recursionBasic Recursion

Two types of recursion

● Is this word a palindrome?
● How many students are there in this row?
● How can I draw a nth-order Cantor set?
● What is 100! Factorial?
● Solve Towers of Hanoi for 5 disks?
● Find a number in a list using binary search?

● What are all the possible sequences for
coin flips if you flip n times?

● What are all the possible ways to
rearrange the letters in the word “saki”?

● What are all the possible subsets of Trip,
Kylie, and Jenny?

Backtracking recursionBasic Recursion

Two types of recursion

● Is this word a palindrome?
● How many students are there in this row?
● How can I draw a nth-order Cantor set?
● What is 100! Factorial?
● Solve Towers of Hanoi for 5 disks?
● Find a number in a list using binary search?

● What are all the possible sequences for
coin flips if you flip n times?

● What are all the possible ways to
rearrange the letters in the word “saki”?

● What are all the possible subsets of Trip,
Kylie, and Jenny?

Backtracking recursionBasic Recursion

One repeated task that builds
up a solution as you come back
up the call stack

Build up many possible
solutions through multiple
recursive calls at each step

Two types of recursion

● Is this word a palindrome?
● How many students are there in this row?
● How can I draw a nth-order Cantor set?
● What is 100! Factorial?
● Solve Towers of Hanoi for 5 disks?
● Find a number in a list using binary search?

● What are all the possible sequences for
coin flips if you flip n times?

● What are all the possible ways to
rearrange the letters in the word “saki”?

● What are all the possible subsets of Trip,
Kylie, and Jenny?

Backtracking recursionBasic Recursion

The final base case defines the
initial seed of the solution and
each call contributes a little bit
to the solution

Seed the initial recursive call
with an “empty” solution

Two types of recursion

● Is this word a palindrome?
● How many students are there in this row?
● How can I draw a nth-order Cantor set?
● What is 100! Factorial?
● Solve Towers of Hanoi for 5 disks?
● Find a number in a list using binary search?

● What are all the possible sequences for
coin flips if you flip n times?

● What are all the possible ways to
rearrange the letters in the word “saki”?

● What are all the possible subsets of Trip,
Kylie, and Jenny?

Backtracking recursionBasic Recursion

Initial call to recursive
function produces final
solution

At each base case, you have a
potential solution

Two types of recursion

● Is this word a palindrome?
● How many students are there in this row?
● How can I draw a nth-order Cantor set?
● What is 100! Factorial?
● Solve Towers of Hanoi for 5 disks?
● Find a number in a list using binary search?

● What are all the possible sequences for
coin flips if you flip n times?

● What are all the possible ways to
rearrange the letters in the word “saki”?

● What are all the possible subsets of Trip,
Kylie, and Jenny?

Backtracking recursionBasic Recursion

Two types of recursion

Basic recursion

● One repeated task that builds up
a solution as you come back up
the call stack

● The final base case defines the
initial seed of the solution and
each call contributes a little bit to
the solution

● Initial call to recursive function
produces final solution

Backtracking recursion

● Build up many possible solutions
through multiple recursive calls at
each step

● Seed the initial recursive call with
an “empty” solution

● At each base case, you have a
potential solution

(also called recursive exploration, or
recursive depth-first search)

How can we leverage
backtracking recursion to solve

interesting problems?

Using backtracking recursion

● There are 3 main categories of problems that we can solve by using
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

Using backtracking recursion

● There are 3 main categories of problems that we can solve by using
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

● There are many, many examples of specific problems that we can solve,
including
○ Generating permutations
○ Generating subsets
○ Generating combinations
○ And many, many more

Using backtracking recursion

● There are 3 main categories of problems that we can solve by using
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

● There are many, many examples of specific problems that we can solve,
including
○ Generating permutations
○ Generating subsets
○ Generating combinations
○ And many, many more

Word Scramble

Jumble

● Since 1954, the JUMBLE word puzzle
has been a staple in newspapers.

● The basic idea is to unscramble the
provided letters to make the words on
the left, and then use the letters in the
circles as another set of letters to
unscramble to answer the pun in the
comic.

Jumble

● Since 1954, the JUMBLE word puzzle
has been a staple in newspapers.

● The basic idea is to unscramble the
provided letters to make the words on
the left, and then use the letters in the
circles as another set of letters to
unscramble to answer the pun in the
comic.

Jumble

● Since 1954, the JUMBLE word puzzle
has been a staple in newspapers.

● The basic idea is to unscramble the
provided letters to make the words on
the left, and then use the letters in the
circles as another set of letters to
unscramble to answer the pun in the
comic.

Jumble

● For some people solving puzzles like
this comes pretty easily, but this is
actually a pretty challenging problem!
○ For a 6-letter word, there are 6! = 720

possible arrangements of the letters

● Can we write a program to print out all
the combinations to help us solve this
puzzle?

We’ve already seen sequences...

● Yesterday we looked at sequences
composed of 2 fixed options (heads or
tails), where the length was independent
of the available choices.

● Now we have different constraints on our
sequence:
○ Rather than having 2 fixed options (heads and

tails), we have many possible options (letters).
○ An option goes away as a choice once it’s

been selected (each letter only used once).
○ Length is dependent on initial # of choices.

Permutations

Permutations

● A permutation of a sequence is a
sequence with the same elements,
though possibly in a different order.

Permutations

● A permutation of a sequence is a
sequence with the same elements,
though possibly in a different order.

Permutations

● A permutation of a sequence is a
sequence with the same elements,
though possibly in a different order.

● For example, permutations of the
words in the motto "E Pluribus
Unum" would be:
○ E Pluribus Unum
○ E Unum Pluribus
○ Pluribus E Unum
○ Pluribus Unum E
○ Unum E Pluribus
○ Unum Pluribus E

Common question from students

● Can you solve all backtracking recursion problems with equivalent iterative
solutions?

● Answer:

Common question from students

● Can you solve all backtracking recursion problems with equivalent iterative
solutions?

● Answer:

Common question from students

● Can you solve all backtracking recursion problems with equivalent iterative
solutions?

● Answer:

Common question from students

● Can you solve all backtracking recursion problems with equivalent iterative
solutions?

● Answer:

Common question from students

● Can you solve all backtracking recursion problems with equivalent iterative
solutions?

● Answer:

Permutations Intuition

What are all the permutations of the string "saki"?

Permutations Intuition

What are all the permutations of the string "saki"?
○ "saki"
○ "saik"
○ "skai"
○ "skia"
○ "sika"
○ "siak"
○ "aski"
○ "asik"
○ "aksi"
○ "akis"
○ "aisk"
○ "aiks"

○ "ksai"
○ "ksia"
○ "kasi"
○ "kais"
○ "kias"
○ "kisa"
○ "ikas"
○ "iksa"
○ "iaks"
○ "Iask"
○ "iska"
○ "isak"

Permutations Intuition

What are all the permutations of the string "saki"?
○ "saki"
○ "saik"
○ "skai"
○ "skia"
○ "sika"
○ "siak"
○ "aski"
○ "asik"
○ "aksi"
○ "akis"
○ "aisk"
○ "aiks"

○ "ksai"
○ "ksia"
○ "kasi"
○ "kais"
○ "kias"
○ "kisa"
○ "ikas"
○ "iksa"
○ "iaks"
○ "Iask"
○ "iska"
○ "isak"

A quarter of the
permutations start with "s",

followed by all the
permutations of "aki"

Permutations Intuition

What are all the permutations of the string "saki"?
○ "saki"
○ "saik"
○ "skai"
○ "skia"
○ "sika"
○ "siak"
○ "aski"
○ "asik"
○ "aksi"
○ "akis"
○ "aisk"
○ "aiks"

○ "ksai"
○ "ksia"
○ "kasi"
○ "kais"
○ "kias"
○ "kisa"
○ "ikas"
○ "iksa"
○ "iaks"
○ "Iask"
○ "iska"
○ "isak"

A quarter of the
permutations start with "a",

followed by all the
permutations of "ski"

Permutations Intuition

What are all the permutations of the string "saki"?
○ "saki"
○ "saik"
○ "skai"
○ "skia"
○ "sika"
○ "siak"
○ "aski"
○ "asik"
○ "aksi"
○ "akis"
○ "aisk"
○ "aiks"

○ "ksai"
○ "ksia"
○ "kasi"
○ "kais"
○ "kias"
○ "kisa"
○ "ikas"
○ "iksa"
○ "iaks"
○ "Iask"
○ "iska"
○ "isak"

A quarter of the
permutations start with
"k", followed by all the
permutations of "sai"

Permutations Intuition

What are all the permutations of the string "saki"?
○ "saki"
○ "saik"
○ "skai"
○ "skia"
○ "sika"
○ "siak"
○ "aski"
○ "asik"
○ "aksi"
○ "akis"
○ "aisk"
○ "aiks"

○ "ksai"
○ "ksia"
○ "kasi"
○ "kais"
○ "kias"
○ "kisa"
○ "ikas"
○ "iksa"
○ "iaks"
○ "iask"
○ "iska"
○ "isak"

A quarter of the
permutations start with

"i", followed by all the
permutations of "sak"

Permutations Intuition

What are all the permutations of the string "saki"?
○ "saki"
○ "saik"
○ "skai"
○ "skia"
○ "sika"
○ "siak"
○ "aski"
○ "asik"
○ "aksi"
○ "akis"
○ "aisk"
○ "aiks"

○ "ksai"
○ "ksia"
○ "kasi"
○ "kais"
○ "kias"
○ "kisa"
○ "ikas"
○ "iksa"
○ "iaks"
○ "iask"
○ "iska"
○ "isak"

Can we formalize
this intuition in a

decision tree?

What defines our permutations decision tree?

What defines our permutations decision tree?

● Decision at each step (each level of the tree):
○ What is the next letter that is going to get added to the permutation?

What defines our permutations decision tree?

● Choose: decision at each step (each level of the tree):
○ What is the next letter that is going to get added to the permutation?

● Explore: options at each decision (branches from each node):
○ One option for every remaining element that hasn't been selected yet
○ Note: The number of options will be different at each level of the tree!

What defines our permutations decision tree?

● Choose: decision at each step (each level of the tree):
○ What is the next letter that is going to get added to the permutation?

● Explore: options at each decision (branches from each node):
○ One option for every remaining element that hasn't been selected yet
○ Note: The number of options will be different at each level of the tree!

● Information we need to store along the way:
○ The permutation you’ve built so far
○ The remaining elements in the original sequence

Decision tree: Find all permutations of "cat"
"cat"

""

Decisions yet to be made
Decisions made so far

Decision tree: Find all permutations of "cat"
"cat"

""

Decisions yet to be made
Decisions made so far

"at"

"c"

c

Decision tree: Find all permutations of "cat"
"cat"

""

Decisions yet to be made
Decisions made so far

"at"

"c"

"ct"

"a"

c

a

Decision tree: Find all permutations of "cat"
"cat"

""

Decisions yet to be made
Decisions made so far

"at"

"c"

"ct"

"a"

"ca"

"t"

c

a

t

Decision tree: Find all permutations of "cat"
"cat"

""

Decisions yet to be made
Decisions made so far

"at"

"c"

"ct"

"a"

"ca"

"t"

"t"

"ca"

c

a

t

a

Decision tree: Find all permutations of "cat"
"cat"

""

Decisions yet to be made
Decisions made so far

"at"

"c"

"ct"

"a"

"ca"

"t"

"t"

"ca"

c

a

t

a

"a"

"ct"

t

Decision tree: Find all permutations of "cat"
"cat"

""

Decisions yet to be made
Decisions made so far

"at"

"c"

"ct"

"a"

"ca"

"t"

"t"

"ca"

c

a

t

a

"a"

"ct"

t

"t"

"ac"

c

Decision tree: Find all permutations of "cat"
"cat"

""

Decisions yet to be made
Decisions made so far

"at"

"c"

"ct"

"a"

"ca"

"t"

"t"

"ca"

c

a

t

a

"a"

"ct"

t

"t"

"ac"

c

"c"

"at"

t

Decision tree: Find all permutations of "cat"
"cat"

""

Decisions yet to be made
Decisions made so far

"at"

"c"

"ct"

"a"

"ca"

"t"

"t"

"ca"

c

a

t

a

"a"

"ct"

t

"t"

"ac"

c

"c"

"at"

t

"a"

"tc"

c

Decision tree: Find all permutations of "cat"
"cat"

""

Decisions yet to be made
Decisions made so far

"at"

"c"

"ct"

"a"

"ca"

"t"

"t"

"ca"

c

a

t

a

"a"

"ct"

t

"t"

"ac"

c

"c"

"at"

t

"a"

"tc"

c

"c"

"ta"

a

Decision tree: Find all permutations of "cat"
"cat"

""

Decisions yet to be made
Decisions made so far

"at"

"c"

"ct"

"a"

"ca"

"t"

"t"

"ca"

"t"

"ac"

"a"

"tc"

"a"

"ct"

"c"

"at"

"c"

"ta"

"cat"

c

a

t

a ac ctt

t

Decision tree: Find all permutations of "cat"
"cat"

""

Decisions yet to be made
Decisions made so far

"at"

"c"

"ct"

"a"

"ca"

"t"

"t"

"ca"

"t"

"ac"

"a"

"tc"

"a"

"ct"

"c"

"at"

"c"

"ta"

"cat" "cta"

c

a

t

a a

a

c ctt

t

Decision tree: Find all permutations of "cat"
"cat"

""

Decisions yet to be made
Decisions made so far

"at"

"c"

"ct"

"a"

"ca"

"t"

"t"

"ca"

"t"

"ac"

"a"

"tc"

"a"

"ct"

"c"

"at"

"c"

"ta"

"cat" "cta" "act"

c

a

t

a a

a

c ctt

t t

Decision tree: Find all permutations of "cat"
"cat"

""

Decisions yet to be made
Decisions made so far

"at"

"c"

"ct"

"a"

"ca"

"t"

"t"

"ca"

"t"

"ac"

"a"

"tc"

"a"

"ct"

"c"

"at"

"c"

"ta"

"cat" "cta" "act" "atc"

c

a

t

a a

a

c c

c

tt

t t

Decision tree: Find all permutations of "cat"
"cat"

""

Decisions yet to be made
Decisions made so far

"at"

"c"

"ct"

"a"

"ca"

"t"

"t"

"ca"

"t"

"ac"

"a"

"tc"

"a"

"ct"

"c"

"at"

"c"

"ta"

"cat" "cta" "act" "atc" "tca"

c

a

t

a a

a a

c c

c

tt

t t

Decision tree: Find all permutations of "cat"
"cat"

""

Decisions yet to be made
Decisions made so far

"at"

"c"

"ct"

"a"

"ca"

"t"

"t"

"ca"

"t"

"ac"

"a"

"tc"

"a"

"ct"

"c"

"at"

"c"

"ta"

"cat" "cta" "act" "atc" "tca" "tac"

c

a

t

a a

a a

c c

c c

tt

t t

Decision tree: Find all permutations of "cat"
"cat"

""

Decisions yet to be made
Decisions made so far

"at"

"c"

"ct"

"a"

"ca"

"t"

"t"

"ca"

"t"

"ac"

"a"

"tc"

"a"

"ct"

"c"

"at"

"c"

"ta"

"cat" "cta" "act" "atc" "tca" "tac"

c

a

t

a a

a a

c c

c c

tt

t t

Base case: No letters remaining to choose!

Decision tree: Find all permutations of "cat"
"cat"

""

Decisions yet to be made
Decisions made so far

"at"

"c"

"ct"

"a"

"ca"

"t"

"t"

"ca"

"t"

"ac"

"a"

"tc"

"a"

"ct"

"c"

"at"

"c"

"ta"

"cat" "cta" "act" "atc" "tca" "tac"

c

a

t

a a

a a

c c

c c

tt

t t

Recursive case: For every letter remaining, add that letter to the current permutation and recurse!

Let’s code it!

Permutations Code

void listPermutations(string s){
 listPermutationsHelper(s, "");
}

void listPermutationsHelper(string remaining, string soFar) {
 if (remaining.empty()) {
 cout << soFar << endl;
 } else {
 for (int i = 0; i < remaining.length(); i++) {
 char nextLetter = remaining[i];
 string rest = remaining.substr(0, i) + remaining.substr(i+1);
 listPermutationsHelper(rest, soFar + nextLetter);
 }
 }
}

Permutations Code

void listPermutations(string s){
 listPermutationsHelper(s, "");
}

void listPermutationsHelper(string remaining, string soFar) {
 if (remaining.empty()) {
 cout << soFar << endl;
 } else {
 for (int i = 0; i < remaining.length(); i++) {
 char nextLetter = remaining[i];
 string rest = remaining.substr(0, i) + remaining.substr(i+1);
 listPermutationsHelper(rest, soFar + nextLetter);
 }
 }
}

Use of recursive helper
function with empty
string as starting point

Permutations Code

void listPermutations(string s){
 listPermutationsHelper(s, "");
}

void listPermutationsHelper(string remaining, string soFar) {
 if (remaining.empty()) {
 cout << soFar << endl;
 } else {
 for (int i = 0; i < remaining.length(); i++) {
 char nextLetter = remaining[i];
 string rest = remaining.substr(0, i) + remaining.substr(i+1);
 listPermutationsHelper(rest, soFar + nextLetter);
 }
 }
}

Decisions yet
to be made

Permutations Code

void listPermutations(string s){
 listPermutationsHelper(s, "");
}

void listPermutationsHelper(string remaining, string soFar) {
 if (remaining.empty()) {
 cout << soFar << endl;
 } else {
 for (int i = 0; i < remaining.length(); i++) {
 char nextLetter = remaining[i];
 string rest = remaining.substr(0, i) + remaining.substr(i+1);
 listPermutationsHelper(rest, soFar + nextLetter);
 }
 }
}

Decisions yet
to be made Decisions

already made

Permutations Code

void listPermutations(string s){
 listPermutationsHelper(s, "");
}

void listPermutationsHelper(string remaining, string soFar) {
 if (remaining.empty()) {
 cout << soFar << endl;
 } else {
 for (int i = 0; i < remaining.length(); i++) {
 char nextLetter = remaining[i];
 string rest = remaining.substr(0, i) + remaining.substr(i+1);
 listPermutationsHelper(rest, soFar + nextLetter);
 }
 }
}

Decisions yet
to be made Decisions

already made

Base case: No decisions remain

Permutations Code

void listPermutations(string s){
 listPermutationsHelper(s, "");
}

void listPermutationsHelper(string remaining, string soFar) {
 if (remaining.empty()) {
 cout << soFar << endl;
 } else {
 for (int i = 0; i < remaining.length(); i++) {
 char nextLetter = remaining[i];
 string rest = remaining.substr(0, i) + remaining.substr(i+1);
 listPermutationsHelper(rest, soFar + nextLetter);
 }
 }
}

Decisions yet
to be made Decisions

already made

Recursive case: Try all
options for next decisionBase case: No decisions remain

Takeaways

● The specific model of the general "choose / explore / unchoose" pattern in
backtracking recursion that we applied here can be thought of as "copy, edit,
recurse"
○ Since we passed all our parameters by value, each recursive stack frame had its own

independent copy of the string data that it could edit as appropriate
○ The "unchoose" step is implicit since there is no need to undo anything by virtue of the fact that

editing a copy only has local consequences.

Takeaways

● The specific model of the general "choose / explore / unchoose" pattern in
backtracking recursion that we applied here can be thought of as "copy, edit,
recurse"

● At each step of the recursive backtracking process, it is important to keep
track of the decisions we've made so far and the decisions we have left to
make

Takeaways

● The specific model of the general "choose / explore / unchoose" pattern in
backtracking recursion that we applied here can be thought of as "copy, edit,
recurse"

● At each step of the recursive backtracking process, it is important to keep
track of the decisions we've made so far and the decisions we have left to
make

● Backtracking recursion can have variable branching factors at each level

Takeaways

● The specific model of the general "choose / explore / unchoose" pattern in
backtracking recursion that we applied here can be thought of as "copy, edit,
recurse"

● At each step of the recursive backtracking process, it is important to keep
track of the decisions we've made so far and the decisions we have left to
make

● Backtracking recursion can have variable branching factors at each level

● Use of helper functions and initial empty params that get built up is common

Using backtracking recursion

● There are 3 main categories of problems that we can solve by using
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

● There are many, many examples of specific problems that we can solve,
including
○ Generating permutations
○ Generating subsets
○ Generating combinations
○ And many, many more

Announcements

Announcements

● Assignment 3 was just released and will be due next Tuesday, July 19 at
11:59pm PDT with a 24-hour grace period.
○ YEAH session is TODAY (Tuesday) at 5pm Pacific Time in Hewlett 101.

● Assignment 2 grades will be released this weekend.
○ Revisions will be due Friday, July 22.

● Congrats on finishing the midterm! Not everyone has finished it yet. If you've
finished the exam, please refrain from discussing any questions, even
among peers who are also done, until the solutions are released early next
week.
○ Remember, you will have the option to reflect on your work and get ⅓ of the points you lost if

you sign up for a midterm check in session with your SL next week.

● No more exams! Final project information comes out today. :)

Shrinkable Words

“What nine-letter word can be reduced to a
single-letter word one letter at a time by removing

letters, leaving it a legal word at each step?”

startling → starling → staring → string → sting → sing → sin → in → i

Is there really just one nine-letter word with
this property?

How can we determine if a word is shrinkable?

● A shrinkable word is a word that can be reduced down to one letter by
removing one character at a time, leaving a word at each step.

● Idea: Let’s use a decision tree to remove letters and determine shrinkability!

What defines our shrinkable decision tree?

● Choose decision at each step (each level of the tree):
○ What letter are going to remove?

● Explore options at each decision (branches from each node):
○ The remaining letters in the string

● Information we need to store along the way:
○ The shrinking string

What defines our shrinkable decision tree?

ct ct

Examples from Chris Gregg and Keith Schwarz

What defines our shrinkable decision tree?

ct ct

“Cart” is shrinkable...
...because “art” is

shrinkable....

...because “at” is
shrinkable....

...because “a” is a
single-letter word.

Examples from Chris Gregg and Keith Schwarz

What defines our shrinkable decision tree?

ct ct

We can find a path through the
tree in two different ways!

Examples from Chris Gregg and Keith Schwarz

What defines our shrinkable decision tree?

ct ct

We can find a path through the
tree in two different ways!cart

art

at

a

Examples from Chris Gregg and Keith Schwarz

Attendance ticket:
https://tinyurl.com/shrinkableword

Please don’t send this link to students who are not here. It’s on your honor!

https://tinyurl.com/shrinkableword

What defines our shrinkable decision tree?

ct ct

We can find a path through the
tree in two different ways!cart

cat

at

a

Examples from Chris Gregg and Keith Schwarz

Non-shrinkability

Examples from Chris Gregg and Keith Schwarz

Non-shrinkability

Examples from Chris Gregg and Keith Schwarz

“Up” is not
shrinkable...

...because neither “P”
nor “U” are words.

Non-shrinkability

Examples from Chris Gregg and Keith Schwarz

“Cup” is not
shrinkable...

...because none of these
are shrinkable words.

Non-shrinkability

Examples from Chris Gregg and Keith Schwarz

“Cusp” is not
shrinkable...

...because none of these
are shrinkable words.

How can we determine if a word is shrinkable?

● Base cases:
○ A string that is not a valid English word is not a shrinkable word.
○ Any single-letter English word is shrinkable (A, I, and O).

● Recursive cases:
○ A multi-letter word is shrinkable if you can remove a letter to form a

shrinkable word.
○ A multi-letter word is not shrinkable if no matter what letter you remove,

it’s not shrinkable.

Lexicon

● Lexicon is a helpful ADT provided by the Stanford C++ libraries (in lexicon.h)
that is used specifically for storing many words that make up a dictionary

● Generally, Lexicons offer faster lookup than normal Sets, which is why we
choose to use them when dealing with words and large dictionaries

● Lexicon lex("res/EnglishWords.txt"); // create from file
lex.contains("koala"); // returns true
lex.contains("zzzzz"); // returns false
lex.containsPrefix("fi"); // returns true if there are
any words starting with "fi" in the dictionary

Let’s code it!

Takeaways

● This is another example of copy-edit-recurse to choose, explore, and then
implicitly unchoose!

● In this problem, we’re using backtracking to find if a solution exists.
○ Notice the way the recursive case is structured:

for all options at each decision point:

if recursive call returns true:

return true;

return false if all options are exhausted;

Using backtracking recursion

● There are 3 main categories of problems that we can solve by using
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

● There are many, many examples of specific problems that we can solve,
including
○ Generating permutations
○ Generating subsets
○ Generating combinations
○ And many, many more

Subsets

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

Subsets of teaching team to grade the midterm

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

Even though we may not
care about this “team,” the
empty set is a subset of our

original set!

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

As humans, it might be
easiest to think about all

teams (subsets) of a
particular size.

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{“Jenny”}

{“Kylie”}

{“Trip”}

As humans, it might be
easiest to think about all

teams (subsets) of a
particular size.

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{“Jenny”}

{“Kylie”}

{“Trip”}

{“Jenny”, “Kylie”}

{“Jenny”, “Trip”}

{“Kylie”, “Trip”}

As humans, it might be
easiest to think about all

teams (subsets) of a
particular size.

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{“Jenny”}

{“Kylie”}

{“Trip”}

{“Jenny”, “Kylie”}

{“Jenny”, “Trip”}

{“Kylie”, “Trip”}

{“Jenny”, “Kylie”, “Trip”}

As humans, it might be
easiest to think about all

teams (subsets) of a
particular size.

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{“Jenny”}

{“Kylie”}

{“Trip”}

{“Jenny”, “Kylie”}

{“Jenny”, “Trip”}

{“Kylie”, “Trip”}

{“Jenny”, “Kylie”, “Trip”}

Another case of
“generate/count all

solutions” using recursive
backtracking!

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{“Jenny”}

{“Kylie”}

{“Trip”}

{“Jenny”, “Kylie”}

{“Jenny”, “Trip”}

{“Kylie”, “Trip”}

{“Jenny”, “Kylie”, “Trip”}

For computers generating
subsets (and thinking about
decisions), there’s another
pattern we might notice...

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{“Jenny”}

{“Kylie”}

{“Trip”}

{“Jenny”, “Kylie”}

{“Jenny”, “Trip”}

{“Kylie”, “Trip”}

{“Jenny”, “Kylie”, “Trip”}

Half the subsets contain
“Jenny”

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{“Jenny”}

{“Kylie”}

{“Trip”}

{“Jenny”, “Kylie”}

{“Jenny”, “Trip”}

{“Kylie”, “Trip”}

{“Jenny”, “Kylie”, “Trip”}

Half the subsets contain
“Kylie”

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{“Jenny”}

{“Kylie”}

{“Trip”}

{“Jenny”, “Kylie”}

{“Jenny”, “Trip”}

{“Kylie”, “Trip”}

{“Jenny”, “Kylie”, “Trip”}

Half the subsets contain
“Trip”

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{“Jenny”}

{“Kylie”}

{“Trip”}

{“Jenny”, “Kylie”}

{“Jenny”, “Trip”}

{“Kylie”, “Trip”}

{“Jenny”, “Kylie”, “Trip”}

Half the subsets that
contain “Trip” also contain

“Jenny”

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{“Jenny”}

{“Kylie”}

{“Trip”}

{“Jenny”, “Kylie”}

{“Jenny”, “Trip”}

{“Kylie”, “Trip”}

{“Jenny”, “Kylie”, “Trip”}

Half the subsets that
contain both “Trip” and
“Jenny” contain “Kylie”

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{“Jenny”}

{“Kylie”}

{“Trip”}

{“Jenny”, “Kylie”}

{“Jenny”, “Trip”}

{“Kylie”, “Trip”}

{“Jenny”, “Kylie”, “Trip”}

🤔

What defines our subsets decision tree?

● Choose decision at each step (each level of the tree):
○ Are we going to include a given element in our subset?

What defines our subsets decision tree?

● Choose decision at each step (each level of the tree):
○ Are we going to include a given element in our subset?

● Explore options at each decision (branches from each node):
○ Include element
○ Don’t include element

What defines our subsets decision tree?

● Decision at each step (each level of the tree):
○ Are we going to include a given element in our subset?

● Options at each decision (branches from each node):
○ Include element
○ Don’t include element

● Information we need to store along the way:
○ The set you’ve built so far
○ The remaining elements in the original set

Decision tree
Empty set

Decision tree
Empty set Include JennyDon’t include Jenny

Decision tree
Empty set Include JennyDon’t include Jenny

No Kylie Kylie

Decision tree
Empty set Include JennyDon’t include Jenny

No Kylie Kylie

No Trip Trip

Decision tree
Empty set Include JennyDon’t include Jenny

No Kylie Kylie

No Trip Trip No Trip Trip

No Kylie Kylie

No Trip Trip No Trip Trip

What defines our subsets decision tree?

● Decision at each step (each level of the tree):
○ Are we going to include a given element in our subset?

● Options at each decision (branches from each node):
○ Include element
○ Don’t include element

● Information we need to store along the way:
○ The set you’ve built so far
○ The remaining elements in the original set

Decision tree

Remaining: {“Jenny”, “Kylie”, “Trip”}

Remaining: {“Kylie”, “Trip”}

Decision tree

Remaining: {“Nick”, “Kylie”, “Trip”}

Remaining: {“Kylie”, “Trip”}

Remaining: {“Trip”}

Decision tree

Remaining: {“Nick”, “Kylie”, “Trip”}

Remaining: {“Kylie”, “Trip”}

Remaining: {“Trip”}

Remaining: {}

Decision tree

Remaining: {“Nick”, “Kylie”, “Trip”}

Remaining: {“Kylie”, “Trip”}

Remaining: {“Trip”}

Remaining: {}

Base case: No people remaining to choose from!

Decision tree

Remaining: {“Nick”, “Kylie”, “Trip”}

Remaining: {“Kylie”, “Trip”}

Remaining: {“Trip”}

Remaining: {}

Recursive case: Pick someone in the set. Choose to
include or not include them.

Let’s code it!

Takeaways

● This is our first time seeing an explicit “unchoose” step
○ This is necessary because we’re passing sets by reference and editing

them!

Takeaways

● This is our first time seeing an explicit “unchoose” step
○ This is necessary because we’re passing sets by reference and editing

them!

string elem = remaining.first();

// remove this element from possible choices

remaining = remaining - elem;

listSubsetsHelper(remaining, chosen); // do not add elem to chosen

chosen = chosen + elem;

listSubsetsHelper(remaining, chosen); // add elem to chosen

chosen = chosen - elem;

// add this element back to possible choices

remaining = remaining + elem;

Takeaways

● This is our first time seeing an explicit “unchoose” step
○ This is necessary because we’re passing sets by reference and editing

them!

string elem = remaining.first();

// remove this element from possible choices

remaining = remaining - elem;

listSubsetsHelper(remaining, chosen); // do not add elem to chosen

chosen = chosen + elem;

listSubsetsHelper(remaining, chosen); // add elem to chosen

chosen = chosen - elem;

// add this element back to possible choices

remaining = remaining + elem;

Choose

Takeaways

● This is our first time seeing an explicit “unchoose” step
○ This is necessary because we’re passing sets by reference and editing

them!

string elem = remaining.first();

// remove this element from possible choices

remaining = remaining - elem;

listSubsetsHelper(remaining, chosen); // do not add elem to chosen

chosen = chosen + elem;

listSubsetsHelper(remaining, chosen); // add elem to chosen

chosen = chosen - elem;

// add this element back to possible choices

remaining = remaining + elem;

Explore
(part 1)

Takeaways

● This is our first time seeing an explicit “unchoose” step
○ This is necessary because we’re passing sets by reference and editing

them!

string elem = remaining.first();

// remove this element from possible choices

remaining = remaining - elem;

listSubsetsHelper(remaining, chosen); // do not add elem to chosen

chosen = chosen + elem;

listSubsetsHelper(remaining, chosen); // add elem to chosen

chosen = chosen - elem;

// add this element back to possible choices

remaining = remaining + elem;

Explore
(part 2)

Takeaways

● This is our first time seeing an explicit “unchoose” step
○ This is necessary because we’re passing sets by reference and editing

them!

string elem = remaining.first();

// remove this element from possible choices

remaining = remaining - elem;

listSubsetsHelper(remaining, chosen); // do not add elem to chosen

chosen = chosen + elem;

listSubsetsHelper(remaining, chosen); // add elem to chosen

chosen = chosen - elem;

// add this element back to possible choices

remaining = remaining + elem;

Explicit
Unchoose
(i.e. undo)

Takeaways

● This is our first time seeing an explicit “unchoose” step
○ This is necessary because we’re passing sets by reference and editing

them!

string elem = remaining.first();

// remove this element from possible choices

remaining = remaining - elem;

listSubsetsHelper(remaining, chosen); // do not add elem to chosen

chosen = chosen + elem;

listSubsetsHelper(remaining, chosen); // add elem to chosen

chosen = chosen - elem;

// add this element back to possible choices

remaining = remaining + elem;

Without this
step, we could
not explore the
other side of
the tree

Takeaways

● This is our first time seeing an explicit “unchoose” step
○ This is necessary because we’re passing sets by reference and editing

them!

● It’s important to consider not only decisions and options at each decision, but
also to keep in mind what information you have to keep track of with each
recursive call. This might help you define your base case.

Takeaways

● This is our first time seeing an explicit “unchoose” step
○ This is necessary because we’re passing sets by reference and editing

them!

● It’s important to consider not only decisions and options at each decision, but
also to keep in mind what information you have to keep track of with each
recursive call. This might help you define your base case.

● The subset problem contains themes we’ve seen in backtracking recursion:
○ Building up solutions as we go down the decision tree
○ Using a helper function to abstract away implementation details

Using backtracking recursion

● There are 3 main categories of problems that we can solve by using
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

● There are many, many examples of specific problems that we can solve,
including
○ Generating permutations
○ Generating subsets
○ Generating combinations
○ And many, many more

Summary

Two ways of doing it

● Choose explore undo
○ Uses pass by reference; usually with

large data structures
○ Explicit unchoose step by "undoing"

prior modifications to structure
○ E.g. Generating subsets (one set

passed around by reference to track
subsets)

● Copy edit explore
○ Pass by value; usually when memory

constraints aren’t an issue
○ Implicit unchoose step by virtue of

making edits to copy
○ E.g. Building up a string over time

Three use cases for backtracking

1. Generate/count all solutions
(enumeration)

2. Find one solution (or prove
existence)

3. Pick one best solution

General examples of things you can do:
- Permutations
- Subsets
- Combinations
- etc.

Backtracking recursion: Exploring many possible solutions
Overall paradigm: choose/explore/unchoose

More Recursive Backtracking

