Recursive Backtracking and
Enumeration

What is an example of a game that would be easy
to play if you had the ability to quickly think of all
possible moves/plays?
(pollev.com/cs106bpoll)

"What is an example of a game that would be easy to play if

you had the ability to quickly think of all possible
moves/plays?

m Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS106B/

recursive
problem-solving

Midterm

How can we leverage

TOday’S backtracking recursion to
guestion

solve interesting
problems?

Review

Today'’s

tOpiCS . Word Scramble

. Shrinkable Words

. Generating Subsets

Previously on CS106B....

Towers of Hanoi with n disks

e We want to first move the biggest disk over to the destination peg.
e Now we need to move the stack of three from auxiliary to destination.

(/g’e ovr
existin g3 ~dick
a/galfithm./
I

source auxiliary destination

void findSolutionIterative (int n, char source, char dest, char aux) {
int numMoves = pow(2, n) - 1; // total number of moves necessary

// if number of disks is even, swap dest and aux posts
if (n $ 2 == 0) {

char temp = dest;
° dest = aux;
aux = temp;
Elegance (Towers of Hanoi)
Stack<int> srcStack;
for (int i = n; i > 0; i--) {
srcStack.push (i) ;

}
I cout << srcStack << endl;

Stack<int> destStack;
Stack<int> auxStack;
// Determine next move based on how many moves have been made so far
for (int i = 1; i <= numMoves; i++) {

switch (i % 3) {

case 1:
if (srcStack.isEmpty () ||
(!'destStack.isEmpty () && srcStack.peek() > destStack.peek())) {
srcStack.push (destStack.pop()) ;

moveSingleDisk (dest, source);
} else {
destStack.push (srcStack.pop()) ;
moveSingleDisk (source, dest);
}
o . . break;
source auxiliary destination case 2:
if (srcStack.isEmpty () ||
('auxStack.isEmpty () && srcStack.peek() > auxStack.peek())) {

void findSolution(int n, char source, char dest, srestack push (auxStack.pop () ;
moveSingleDisk (aux, source);
} else {
char aux) { auxStack.push (sreStack.pop()) ;
) moveSingleDisk (source, aux);
if (n==1 }
(.) { . break;
moveSingleDisk (source, dest); case 0
if (destStack.isEmpty() ||
('auxStack.isEmpty () && destStack.peek() > auxStack.peek())) {
} else { destStack.push (auxStack.pop () ;
. . SingleDisk (aux, dest);
findSolution(n - 1, source, aux, dest); }oelse (S
.) auxStack.push (destStack.pop()) ;
moveSingleDisk (source, dest); movesingleDisk (dest, aux);
}
findSolution(n - 1, aux, dest, source);) preaks

Elegance

Image tweeted by @DaleTC_

Allows us to write clean and concise code

Finding a number in a sorted list

1125181375977]82|89 101

Finding a number in a sorted list with BINARY
SEARCH

1125 1181375977 |82]|89 101

0] 1 2 3 4 5 6 7 8 9

o

Only do a direct comparison with the

middle element in the list

o Recursively search the left half if the
element is less than the middle

o Recursively search the right half if the

element is greater than the middle

e Leverage the structure in sorted data to

when searching for an element

Finding a number in a sorted list with BINARY
SEARCH

1125 1181375977 |82]|89 101

0] 1 2 3 4 5 6 7 8 9

e Binary search has logarithmic Big-O:
o Enables efficient performance of sets and maps

Efficiency

" 2 return €}
‘..:‘ [C]); } “‘ﬁ‘
| \f\ {r)/gm, e e
~rne ”

-~

Allows us to accomplish better runtimes when solving
problems.

Generating coin sequences

e |et's say that you're playing a game that involves flipping a coin a certain
number of times in a row. Your success in the game depends on the exact

sequence of "heads" and "tails" that you get.

e In a different version of the game, you instead get three flips of the coin on
your turn. What are all the possible ways that your turn could go?

HHH HHT HTH HTT THH THT TTH TTT

How do we know that we got all the poscibilities? How do we aveid repeats?

Takeaways: recursive backtracking + decision trees

e Unlike our previous recursion paradigm in which a solution gets built up as
recursive calls return, in backtracking our final outputs occur at our base cases
(leaves) and get built up as we go down the decision tree.

Dynamic (Coin Sequences + Decision Trees)

e The of the tree corresponds to
the we have to
make. The at each decision

point corresponds to the

Flip heads Empty Flip tails

l sequence l
Flip heads H Flip tails flips Left = 1 Flip heads T Flip tails

HH HT flipsLeft = 0 TH TT

Dynamic (Coin Sequences + Decision Trees)

e The of the tree corresponds to e To exhaustively explore the entire
the we have to search space, we must
make. The at each decision

point corresponds to the

Flip heads Empty Flip tails

l sequence l
Flip heads H Flip tails flips Left 1 Flip heads T Flip tails

HH HT flipsLeft TH TT

[}
()

Dynamic

Allows us to solve problems that are hard to solve

iteratively

Summary

Two types of recursion

e Is this word a palindrome? e What are all the possible sequences

e How many students are in this row? for coin flips if you flip n times?

e How can | draw a nth-order Cantor set? e What are all the possible ways to roll a
e What is n factorial? die n times?

e Solve Towers of Hanoi for 5 disks?

e Find a number in a list using binary search?

Two types of recursion

Basic Recursion

int main() { l

int factorial (int n) {

int factorial (int n) {(— Flip heads H Flip tails
return 1;
} else { n Y \ 4
return n * factorial(n-1);
} 2 HH HT
}

Is this word a palindrome?

How many students are there in this row?
How can | draw a nth-order Cantor set?
What is 100! Factorial?

Solve Towers of Hanoi for 5 disks?

Find a number in a list using binary search?

Empty

flipsLeft = 1

flipsLeft = @

Flip tails

int factorial (int n) { Flip heads
int factorial (int n) { s | sequence |
A

Flip heads

Backtracking recursion

Fiip tails

TH

T

TT

e What are all the possible sequences for
coin flips if you flip n times?

Two types of recursion

Basic Recursion Backtracking recursion

Flip heads Empty Flip tails

| sequence |
Flip heads H Fiip tails flipsteft = 1 Flip heads T Fiip tails

HH HT flipsiLeft = @ TH TT

Is this word a palindrome?

How many students are there in this row?
How can | draw a nth-order Cantor set?
What is 100! Factorial?

Solve Towers of Hanoi for 5 disks?

Find a number in a list using binary search?

e What are all the possible sequences for
coin flips if you flip n times?

Two types of recursion

Basic Recursion Backtracking recursion
int main() { |
Iint factorial (int n) { ‘E‘J— Flip heads Empty Flip tails
,, |
HH == == TT

Is this word a palindrome?

How many students are there in this row?
How can | draw a nth-order Cantor set?
What is 100! Factorial?

Solve Towers of Hanoi for 5 disks?

Find a number in a list using binary search?

e What are all the possible sequences for
coin flips if you flip n times?

Two types of recursion

Basic Recursion Backtracking recursion

Iint main() { I

Flip heads Flip tails

Empty
Flip head: tails
Y 1

HH TT

Is this word a palindrome?

How many students are there in this row?
How can | draw a nth-order Cantor set?
What is 100! Factorial?

Solve Towers of Hanoi for 5 disks?

Find a number in a list using binary search?

e What are all the possible sequences for
coin flips if you flip n times?

Two types of recursion

Basic Recursion Backtracking recursion

Iint main() { I

Flip heads Flip tails

Empty
Flip head: tails
Y 1

HH TT

Is this word a palindrome?

How many students are there in this row?
How can | draw a nth-order Cantor set?
What is 100! Factorial?

Solve Towers of Hanoi for 5 disks?

Find a number in a list using binary search?

e What are all the possible sequences for
coin flips if you flip n times?

Two types of recursion

Basic Recursion

int main() { l

int factorial (int n) {

int factorial (int n) {(— Flip heads H Flip tails
return 1;
} else { n Y \ 4
return n * factorial(n-1);
} 2 HH HT
}

Is this word a palindrome?

How many students are there in this row?
How can | draw a nth-order Cantor set?
What is 100! Factorial?

Solve Towers of Hanoi for 5 disks?

Find a number in a list using binary search?

Empty

flipsLeft = 1

flipsLeft = @

Flip tails

int factorial (int n) { Flip heads
int factorial (int n) { s | sequence |
A

Flip heads

Backtracking recursion

Fiip tails

TH

T

TT

e What are all the possible sequences for
coin flips if you flip n times?

Two types of recursion

Basic recursion Backtracking recursion

e One repeated task that builds up e Build up many possible solutions
a solution as you come back up through multiple recursive calls at
the call stack each step

e The final base case defines the e Seed the initial recursive call with
initial seed of the solution and an “empty” solution
each call contributes a little bit to e At each base case, you have a
the solution potential solution

e |Initial call to recursive function (also called recursive exploration, or
produces final solution recursive depth-first search)

How can we leverage
backtracking recursion to solve
interesting problems?

Using backtracking recursion

e There are 3 main categories of problems that we can solve by using

backtracking recursion:
o We can generate all possible solutions to a problem or count the total number of possible
solutions to a problem
o We can find one specific solution to a problem or prove that one exists
o We can find the best possible solution to a given problem

Using backtracking recursion

e There are 3 main categories of problems that we can solve by using

backtracking recursion:
o We can generate all possible solutions to a problem or count the total number of possible
solutions to a problem
o We can find one specific solution to a problem or prove that one exists
o We can find the best possible solution to a given problem

e There are many, many examples of specific problems that we can solve,
including

Generating permutations

Generating subsets

Generating combinations
And many, many more

o O O O

Using backtracking recursion

e There are 3 main categories of problems that we can solve by using
backtracking recursion:

o We can find the best possible solution to a given problem
e There are many, many examples of specific problems that we can solve,

including

o Generating combinations
o And many, many more

Word Scramble

m THAT SCRAMBLED WORD GAME
J M BL by David L. Hoyt and Jef! Knurek

J u m b I e Unscramble these four Jumbles, o
one letter 10 each square, Mauo
o form four ordinary words
e Since 1954, the JUMBLE word puzzle <Ll
. - 1%
has been a staple in newspapers. AR
LEGIA i‘
L. . N 7N “!
e The basic idea is to unscramble the AN
provided letters to make the words on CRONEE :
, i W 8 '
the left, and then use the letters in the THRY i s i S
. AN ARCHITELT BECALSE Sir€E
circles as another set of letters to TUVEDO NI ANy —
. 7S S Now amrange lhe_ circled letters
unscramble to answer the pun in the _ el e o
comic. Print answer here: (]C j[]()()(][]()

(Answers lomorrow)

Saturday's Jumbles: ELUDE JOINT AGENCY EASILY
Answer: The cyclops' son wanted an action figure for his

birthday, so they bought him a — G- “EYE" JOE

Unscramble these four Jumbles,

Jumble JURMUSILIS, ™St

one letter to each square, Fve aiss -
to form four ordinary words e
| KNIDY "mP A
e Since 1954, the JUMBLE word puzzle — : -
= | more room. o N\
: \DALIN|K| Y : NG NAN =
has been a staple in newspapers. e Sy o 1 LS, 234
LEGIA HEW| N5
SR AIG[TILIE|:]| (2%
e The basic idea is to unscramble the SOAIO HR -
provided letters to make the words on CRONEE e ¥
: ENIC[OIR[E|’|”
the left, and then use the letters in the S R A THE MATH TEACHER HIRED
- AN A ANTED A e e
circles as another set of letters to TUVEDO kA
: DJE[v[o]|u[T) o for e surpris answes, oe
unscramble to answer the pun in the Z A4 suggested by the above cartoon
: YT T Y
comic. print answer here: { X X X X X X X)

woes et D TAINODT

Answer: The CYQIops SO Wiell I &5 sSCu0n gure 1or s
birthday, so they bought him a — G- “EYE" JOE

Saturday's

JTUTRYUBTLTE ™ oo vt n o e

J u m b I e Unscrambie these four Jumbles, :
one letter to each square I've alsd -
1o form four ordinary words lcn‘c“‘g
KNIDY 47) i
e Since 1954, the JUMBLE word puzzle oy . > K
| DYTIN[K]Y]s| [MZ==A)
has been a staple in newspapers. e R Fowey LG = S 3 3
LEGIA A
o ACDEE!| CLS i
e The basic idea is to unscramble the S B N, ;] RN -
provided letters to make the words on CRONEE (= ¥
: ENJC[OIR[E|’]”
the left, and then use the letters in the S N THE MATH TEACHER HRED
AN ARCHTECT BECAUSE SHE
circles as another set of letters to TUVEDO e s e
: DIE[VIO[TUTT) o tom the surpriss answer. as
unscramble to answer the pun in the o, A4 suggested by the above cartoon.
. N
comic. print answer here: (A YD IDYTITYT{OXN)

woes 0t D TAINODT

Answer. The CyOups SO welneu &1 CUOnN Igure ur s
bathday, so they bought him a — G- “EYE" JOE

Saturday's

JTUTRYUBTLTE ™ oo vt n o e

J u m b I e Unscrambie these four Jumbles, :
one letter to each square I've alsd
1o form four ordinary words lcn‘c“‘g
. . KNIDY : _ | |
e For some people solving puzzles like oY T “ - e
. . - (DALIN|K[Y]|s (ﬁ. & A
this comes pretty easily, but this is S e Soare own LG S {87 £33
actually a pretty challenging problem! LEGIA i CIN =
A]G[I)LIE|i]| (&% '
o For a 6-letter word, there are 6! =720 T Bk X HER S ~
possible arrangements of the letters | s '
C?ONEE\ i /%
. . EQN(:$LI{E: THE MATH TEACHER HIRED
e Can we write a program to print out all AN ARCHTECT BECAUSE SHE
N . TUVEDO o R U
the combinations to help us solve this Now amange the circled letiers

@ E V O U [@ 10 form the surprise answer, as

suggested by the above cartoon.
IaYnYnYTrTYmYTYAYa

print answer here: (AIDIDY TYTYT{OXN)

woes ot D TAINODT

Answer. The CyOups SO welneu &1 CUOnN Igure ur s
bathday, so they bought him a — G- “EYE" JOE

puzzle?

Saturday's

We've already seen sequences...

e Yesterday we looked at sequences
composed of 2 fixed options (heads or
tails), where the length was independent
of the available choices.

e Now we have different constraints on our

seqgquence:
o Rather than having 2 fixed options (heads and
tails), we have many possible options (letters).
o An option goes away as a choice once it’s
been selected (each letter only used once).
o Length is dependent on initial # of choices.

Permutations

Permutations

o A of a sequence is a
sequence with the same elements,
though possibly in a different order.

Permutations

o A of a sequence is a
sequence with the same elements,
though possibly in a different order.

Permutations

o A of a sequence is a
sequence with the same elements,
though possibly in a different order.

e For example, permutations of the
words in the motto "E Pluribus

Unum" would be:
E Pluribus Unum
E Unum Pluribus
Pluribus E Unum
Pluribus Unum E
Unum E Pluribus
Unum Pluribus E

o O O O O O

Common question from students

e Can you solve all backtracking recursion problems with equivalent iterative
solutions?
e Answer:

Common question from students

e Can you solve all backtracking recursion problems with equivalent iterative
solutions?

void permuted(string s) {

e Answer: for (nt 1 = B L <4 1s) [
for (int j =0; j <4 ; j+) {
if (j == 1) (

continue; // ignore
}
for (int k = @; k < 4; k++) {
if (k==3 || k==1) {
continue; // ignore
}
for (int w = 0; w < 4; w++) {
if w=k||lw=3 || w==1) {
continue; // ignore
}

cout << s[i] << s[j] << s[k] << s[w] << endl;

Common question from students

void permute5(string s) {

® Can you SOIVE & for tint1=0; 1 <5 i+ ¢ valent iterative
. for (int j =0; j <5 ; j++) {
solutions? if (= 1) (

continue; // ignore
e Answer:)
for (int k = @; k < 5; k++) {
if (k=3 ||l k=1)(
continue; // ignore
}
for (int w=0; w<5; wt+) {
if (w=k ||lw==3 || w==1) {
continue; // ignore
}
for (int x = 0; x < 5; x++) {
if (=K [x=31] x =1 [x=wH
continue;

}

cout << " " << s[i] << s[j] << s[k] << s[w] << s[x] << endl;

void permute6(string s) {
for (int i = 9; i <5; i++) {

for (int j=10; j <5 ; j*+) {

if (7 == 1) {
continue; // ignore

Common «

}

for (int k = 0; k < 5; k++) {
if (k=3 || k==1) {

e Canyousc
solutions?

continue; //

}

ignore

for (int w = 08; w < 5; wt+) {

if(w=k ||lw==3 ||l w==1) {

e Answer;

continue; // ignore
}
for (int x = 0; x < 5; x++) {
if (x=k || x=3F ||l x=1]||x=w){
continue;
}
for (int y = 0; y < 6; y++) {
1 (ye=rkal| byt =g RISy ==S10]y i= wal [Sy =)
continue;
}
cout << " " << s[i] << s[j] << s[k] << s[w] << s[x] << s[y] << endl;
}
}

It iterative

Common ¢

e Canyousc 1t iterative
solutions?

e Answer;

Permutations Intuition

What are all the permutations of the string "saki"?

Permutations Intuition

What are all the permutations of the string "saki"?

o "saki" o "ksai"
o '"saik" o "ksia"
o "skai" o "kasi"
o "skia" o "kais"
o '"sika" o "kias"
o "siak" o "kisa"
o "aski" o '"ikas"
o "asik" o "iksa"
o "aksi" o 'iaks"
o "akis" o "lask”
o "aisk" o "iska"
o aiks’ o ‘isak’

Permutations Intuition

What are all the permutations of the string "saki"?

O O O O O O

n

"aski
"aSik"

n

"aksi
"akis"
aisk"
"aiks"

n

A quarter of the
permutations start with
Follswed by all the

permutations of ‘aki”

N_n

<,

o 0O 0o 0O o 0O o O o o o o

"ksai"
"ksia"
"kasi"
"kais"
"kias"
"kisa"
"ikas"
"iksa"
"laks"
"lask"
"iska"
"isak"

Permutations Intuition

What are all the permutations of the string "saki"?

o "saki" o '"ksai"
o "saik" o "ksia"
o '"skai" o "kasi"
o "skia" o "kais"
o '"sika" o '"kias"
o "siak" o "kisa"
O "ikasll

A quarter of the 6 Miksa"

permutations start with ‘a” o iaks"

Follswed by all the o lask®

N) Y/ o "iSka"

permutatmhs’ 0([le o Misak"

Permutations Intuition

What are all the permutations of the string "saki"?

o "saki" A quarter of the

o "saik"

D e permutatione start with
o "skig" I;é’: fo//awed é_y 01// the
o "sika" permutations of ‘cai”
o "siak"

o "aski" o ‘ikas®

o "asik" o ‘iksa"

o "aksi" o ‘iaks®

o "akis' o “lask

o "aisk" o liska"

o '"aiks" o ‘isak’

Permutations Intuition

What are all the permutations of the string "saki"?

o "saki" o ‘'ksai"

o "saik" o ‘'ksia®

o "skai" o ‘'kasi"

o "skia" © Tkais’

o sika" o ‘kias"

o "siak" o ‘'kisa"

Z ":zikkln A quarter of the

o "aksi" permutations start with
o "akis" T fo//awed éy all the
© "afSk" permutations of ‘cak”
o '"aiks

Permutations Intuition

What are all the permutations of the string "saki"?

o "saki" o '"ksai"
o "saik" o "ksia"
o '"skai" o "kasi"
© 'skia® Can we formalize | o ‘'ais
o "sika" o "kias"
o "siak" t/u'g' l.htUI‘fl.Oh m ol o kisa
o "aski" . . o "ikas"
o "asik" 6(8015'/0!4 tree? o "iksa"
o "aksi" o "iaks"
o "akis" o "iask"
o "aisk" o "iska"
o "aiks" o "isak"

What defines our permutations decision tree?

What defines our permutations decision tree?

e Decision at each step (each level of the tree):
o What is the next letter that is going to get added to the permutation?

What defines our permutations decision tree?

e Choose: decision at each step (each level of the tree):
o What is the next letter that is going to get added to the permutation?

e Explore: options at each decision (branches from each node):
o One option for every remaining element that hasn't been selected yet

What defines our permutations decision tree?

e Choose: decision at each step (each level of the tree):
o What is the next letter that is going to get added to the permutation?

e Explore: options at each decision (branches from each node):

o One option for every remaining element that hasn't been selected yet

e Information we need to store along the way:
o The permutation you've built so far
o The remaining elements in the original sequence

Decisions yet to be made
Decisions made so far

Decision tree: Find all permutations of "cat"

"Cat"

Decisions yet to be made
Decisions made so far

Decision tree: Find all permutations of "cat"

"Cat"

Decisions yet to be made
Decisions made so far

Decision tree: Find all permutations of "cat"

"Cat"

Decisions yet to be made
Decisions made so far

Decision tree: Find all permutations of "cat"

"Catll

Decisions yet to be made
Decisions made so far

Decision tree: Find all permutations of "cat"

(ot

"Catll

Decisions yet to be made
Decisions made so far

Decision tree: Find all permutations of "cat"

"Catll

Decisions yet to be made
Decisions made so far

Decision tree: Find all permutations of "cat"

Decisions yet to be made
Decisions made so far

Decision tree: Find all permutations of "cat"

Decisions yet to be made
Decisions made so far

Decision tree: Find all permutations of "cat"

Decisions yet to be made
Decisions made so far

Decision tree: Find all permutations of "cat"

Decisions yet to be made
Decisions made so far

Decision tree: Find all permutations of "cat"

Decisions yet to be made
Decisions made so far

Decision tree: Find all permutations of "cat"

Decisions yet to be made
Decisions made so far

Decision tree: Find all permutations of "cat"

Decisions yet to be made
Decisions made so far

Decision tree: Find all permutations of "cat"

Decisions yet to be made
Decisions made so far

Decision tree: Find all permutations of "cat"

Decisions yet to be made
Decisions made so far

Decision tree: Find all permutations of "cat"

Decisions yet to be made
Decisions made so far

Decision tree: Find all permutations of "cat"

(ot

l

"Cat"

"at"

"Cta n

"Cat"

t

"actll

: No letters remaining to choosel

l

"Ca"

Decisions yet to be made
Decisions made so far

Decision tree: Find all permutations of "cat"

C t
"Cat"

"at" "Ca"

"Cat" "Cta" "actll "atC" "tca" "tacll

: For every letter remaining, add that letter to the current permutation and recurse!

Let’s code it!

Permutations Code

void listPermutations(string s) {
listPermutationsHelper(s, "");

void listPermutationsHelper (string remaining, string soFar) {
if (remaining.empty()) {
cout << soFar << endl;
} else {
for (int i = 0; i < remaining.length(); i++) {
char nextLetter = remaining[i];
string rest = remaining.substr(0, i) + remaining.substr (i+l);

listPermutationsHelper (rest, soFar + nextLetter);

Permutations Code

Uce of recursive helper

void listPermutations (string s) { ﬁmction with e""/bty
listPermutationsHelper (s, ""); kal'hg’ ac ctart/ug ,bm‘nf

} ~

void listPermutationsHelper (string remaining, string soFar) {

if (remaining.empty()) {
cout << soFar << endl;
} else {
for (int i = 0; i < remaining.length(); i++) {

char nextLetter = remaining[i];
string rest = remaining.substr(0, i) + remaining.substr (i+l);

listPermutationsHelper (rest, soFar + nextLetter);

Permutations Code

Decisione yet

void listPermutations(string s) { to 58 made
listPermutationsHelper(s, "");

void listPermutationsHelper (string remaining, string soFar) {
if (remaining.empty()) {
cout << soFar << endl;
} else {
for (int i = 0; i < remaining.length(); i++) {
char nextLetter = remaining[i];
string rest = remaining.substr(0, i) + remaining.substr (i+l);

listPermutationsHelper (rest, soFar + nextLetter);

Permutations Code

Decisione yet —
: . i . Z)ecuvouc
void listPermutations(string s) { to 58 made
listPermutationsHelper (s, ""); a/reac/y mm{e
}

void listPermutationsHelper (string remaining, string soFar) {
if (remaining.empty()) {
cout << soFar << endl;
} else {
for (int i = 0; i < remaining.length(); i++) {
char nextLetter = remaining[i];
string rest = remaining.substr(0, i) + remaining.substr (i+l);
listPermutationsHelper (rest, soFar + nextLetter);

Permutations Code

Decisione yet —
: i i . Z)ecuvonc
void listPermutations(string s) { to 58 made
listPermutationsHelper (s, ""); a/reac/y mm{e
}

void listPermutationsHelper (string remaining, string soFar) {

if (remaining.empty ()) {é\

cout << soFar << endl; /Vo decicions remain
} else {

for (int i = 0; i < remaining.length(); i++) {

char nextLetter = remaining[i];
string rest = remaining.substr(0, i) + remaining.substr (i+l);
listPermutationsHelper (rest, soFar + nextLetter);

Permutations Code

Decisione yet “
void listPermutations (string s) { to be made Decmouc
listPermutationsHelper (s, ""); a/reac/y mac/e
}
void listPermutationsHelper (string remaining, string soFar) ({ 7}9‘aﬂ
if (remaining.empty()) { €
cout << soFar << endl; /Vo c{ecis‘fah:’ remain Olbfl.Ohg’ (‘701’ nex f 6{€Cl'§'f0h
} else {
for (int i = 0; i < remaining.length(); i++) {]

char nextLetter = remaining[i];
string rest = remaining.substr(0, i) + remaining.substr (i+l);
listPermutationsHelper (rest, soFar + nextLetter);

Takeaways

e The specific model of the general pattern in
backtracking recursion that we applied here can be thought of as

o Since we passed all our parameters by value, each recursive stack frame had its own
independent copy of the string data that it could edit as appropriate

o The "unchoose" step is since there is no need to undo anything by virtue of the fact that
editing a copy only has local consequences.

Takeaways

e The specific model of the general pattern in
backtracking recursion that we applied here can be thought of as

e At each step of the recursive backtracking process, it is important to keep
track of and

Takeaways

e The specific model of the general pattern in
backtracking recursion that we applied here can be thought of as

e At each step of the recursive backtracking process, it is important to keep
track of and

e Backtracking recursion can have at each level

Takeaways

e The specific model of the general pattern in
backtracking recursion that we applied here can be thought of as

e At each step of the recursive backtracking process, it is important to keep
track of and
e Backtracking recursion can have at each level

e Use of helper functions and initial empty params that get built up is common

Using backtracking recursion

e There are 3 main categories of problems that we can solve by using
backtracking recursion:

o We can find one specific solution to a problem or prove that one exists
o We can find the best possible solution to a given problem

e There are many, many examples of specific problems that we can solve,

including

Generating permutations
Generating subsets
Generating combinations
And many, many more

o O O O

Announcements

Announcements

e Assignment 3 was just released and will be due next Tuesday, July 19 at

11:59pm PDT with a 24-hour grace period.
o YEAH session is TODAY (Tuesday) at 5pm Pacific Time in Hewlett 101.

e Assignment 2 grades will be released this weekend.
O Revisions will be due Friday, July 22.
e Congrats on finishing the midterm! Not everyone has finished it yet. If you've
finished the exam, please refrain from discussing any questions, even
among peers who are also done, until the solutions are released early next

week.

o Remember, you will have the option to reflect on your work and get %3 of the points you lost if
you sign up for a midterm check in session with your SL next week.

e No more exams! Final project information comes out today.)

Shrinkable Words

aRE vou \JYES | AM.
GoiNg To SLEEP?] NOW

—

“What nine-letter word can be reduced to a
single-letter word one letter at a time by removing
letters, leaving it a legal word at each step?”

AR\
R L, - \
g Y o ‘\‘.

= v el 8
t'

startling = starling = staring = string = sting = sing =+ sin = in =i

Is there really just one nine-letter word with
this property?

How can we determine if a word is shrinkable?

e A shrinkable word is a word that can be reduced down to one letter by
removing one character at a time, leaving a word at each step.

e |dea: Let’s use a decision tree to remove letters and determine shrinkability!

What defines our shrinkable decision tree?

e Choose decision at each step (each level of the tree):
o What letter are going to remove?

e Explore options at each decision (branches from each node):
o The remaining letters in the string

e Information we need to store along the way:
o The shrinking string

What defines our shrinkable decision tree?

cart
. == e -
art crt cat car
gl N o2 | e, g || Se o | R

m at ar rt ¢t c¢cr at ct ca ar cr ca
YA A N A A VY AV VY A VA VA W A VRV ANV AN

Nl BE e 1 B | | e e e e e e

Examples from Chris bregg and Keith Schwarz

What defines our shrinkable decision tree?

“Coart” ic shrinkable...

...becavce ‘art’ ic cart
_ g’hh’nkaé/e...._F7 \ —
art crt cat car
/1 ~ ..becavce ‘at’ic N /l \ /l \

hrinkable....
M Bl e = B B B B B N

A4 A VA VA VR R4 VRS VA VA VA VAN

{2 } B
HiE W& becavce ‘a"ica . o Ha |tle @Ee e EE BB
cingle-letter word.

Examples from Chris bregg and Keith Schwarz

What defines our shrinkable decision tree?
We can find a path through the

cart tree in two different wayg,/
art crt cat car

el ol g || Se o | e

it at ar rt ¢t cr at ¢t ca ar cr ca
A i N 4% IS Iy I g VAL L

olls il & I [t o i i|e rC e BE e Nl e e

Examples from Chris bregg and Keith Schwarz

What defines our shrinkable decision tree?
We can find a path through the

cart tree in two different wayg./
“ / \ —
art olgi cat car

gl e 2= | Sse g || Se o | e

It at ar rt ¢t cr at ¢t ca ar cr ca
N gy Jh N 4% IS Iy I g VAL L

il t a r a o i i|e rC e BE e Nl e e

Examples from Chris bregg and Keith Schwarz

Attendance ticket:
https://tinvurl.com/shrinkableword

Please don’t send this link to students who are not here. It’s on your honor!

https://tinyurl.com/shrinkableword

What defines our shrinkable decision tree?
We can find a path through the

cart tree in two different wayg./
ar crt cat car

el ol el B o | e

It at ar it ¢t ¢cr at ct ca ar cr ca
A i N 4% IS /x Iy g VAL L

olls il & I [t o i i|e rC e WE & Nl e e

Examples from Chris bregg and Keith Schwarz

Non-shrinkability cusP

Examples from Chris bregg and Keith Schwarz

Non-shrinkability cusP

Examples from Chris bregg and Keith Schwarz

Non-shrinkability cusP

“Ca,b "¢ not
chrmkaé/e

USP

AN A\

us SP CS us

SP cS
/\ / ...becavse none of thece /\ \
H H H are shrinkable words. M E H

Cus

Examples from Chris bregg and Keith Schwarz

ucagp ” e n Uf
Non chrinkable...

...becavse none of these

'/ are chrinkable words. '\

SP || UP || US SP (o up | C cu cs || CU

z L
T @E%@l i i

\
i

Examples from Chris bregg and Keith Schwarz

How can we determine if a word is shrinkable?

e Base cases:

o A string that is not a valid English word is not a shrinkable word.
o Any single-letter English word is shrinkable (A, I, and O).

e Recursive cases:

o A multi-letter word is shrinkable if you can remove a letter to form a
shrinkable word.

o A multi-letter word is not shrinkable if no matter what letter you remove,
it’s not shrinkable.,

Lexicon

e Lexicon is a helpful ADT provided by the Stanford C++ libraries (in 1lexicon.h)
that is used specifically for storing many words that make up a dictionary

e Generally, Lexicons offer faster lookup than normal Sets, which is why we
choose to use them when dealing with words and large dictionaries

® Lexicon lex("res/EnglishWords.txt"); // create from file
lex.contains ("koala"); // returns true
lex.contains ("zzzzz"); // returns false
lex.containsPrefix ("£fi"); // returns true if there are
any words starting with "fi" in the dictionary

Let’s code it!

Takeaways

e This is another example of copy-edit-recurse to choose, explore, and then
implicitly unchoose!

e In this problem, we’re using backtracking to find if a solution exists.
o Notice the way the recursive case is structured:

for all options at each decision point:
1f recursive call returns true:
return true;
return false 1f all options are exhausted;

Using backtracking recursion

e There are 3 main categories of problems that we can solve by using

backtracking recursion:
o We can generate all possible solutions to a problem or count the total number of possible
solutions to a problem

o We can find the best possible solution to a given problem
e There are many, many examples of specific problems that we can solve,

including

Generating permutations
Generating subsets
Generating combinations
And many, many more

o O O O

Subsets

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

Subsets of teaching team to grade the midterm

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

Even thovgh we may not
care about thie ‘team,” the
emply set i¢c a subget of our

original set!

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}
Ac humans, it might be

eaciest to think about all
teams (cubsets) of a

partic viar ¢ize.

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{*Jenny”} Ac humans, it might be
{"Kylie”} eaciest to think abouvt all
{f"Tr‘ip”}

teams (cubsets) of a

partic viar ¢ize.

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{“Jenny”’} Ae humans, it m:‘ykt be
{"Kylie”} eaciest to think abouvt all
{ffTr‘ip.”}

teams (cubsets) of a

{“Jenny”, “Kylie”}
partic viar ¢ize.

{CCJennyJ), C'C'Tr,ip,.’}
{fnylie’,, CCTr\ip,J}

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{“Jenny”’} Ae humans, it m:‘gkt be
{"Kylie”} eaciest to think abouvt all
{ffTr‘ip.”}

teams (cubsets) of a

{“Jenny”, “Kylie”}
partic viar ¢ize.

{ﬂ'JennyJ), C'C'Tr,ip,.’}
{ﬂ'Kylie’,, C‘Tr\ip.”}
{ﬂ'JennyJ), CCKylie.”’ (fTr‘ipJ)}

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or

subsets, of those people:

{}

{*“Jenny”} Awnother case of
{“Kylie™} ‘9enerate/count all
{ffTr\ip”}

colutions” uging recurcive

{“Jenny”, “Kylie”}
’ backtracking!

{ﬂ'JennyJ), C'C'Tr,ip,.’}
{ﬂ'Kylie’,, C‘Tr\ip.”}
{ﬂ'JennyJ), CCKylie.”’ (fTr‘ipJ)}

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{“Jenny”} For computers generating
{“Kylie™} cubgsets [m«d ﬂ\fnéihg about
{"Trip”} decicions), there'c another

{“Jenny”, “Kylie”}
{“Jenny”, “Trip”}
{“Kylie”, “Trip”}
{“Jenny”, “Kylie”, “Trip”’}

pattern we might notice...

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}
{“Kylie”} Half the cvbgeets contain
{“Tr‘ip”} 7€hhy”

{fnylie’,, CCTr\ip,J}

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}
{“Jenny”}

Half the svbeets contain
{“Tr\ip”} “/6//1‘8 ”

{ﬂ'JennyJ), CCTr,ip,.’}

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}
{ﬂ'JennyJ)}

{*Kylie”} Half the svbeets contain

“TF;P ”
{“Jenny”, “Kylie”}

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

“Jenny”
E“Kyli)e/”; Half the cvbgeets that
{“Tr‘ip”} COM?‘&I‘I’I “TI’I.P ”A/S’U contain
{ffJenny’,, CCKylie,,} 7eh”y”

{fnylie’,, CCTr\ip,J}

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}
E,,;;:;:,,; Half the cubgets that
{“Tr'ip”} 00‘17‘&/‘#\ éO?‘A “TI’I'P ”Ahd

{“Jenny”, “Kylie”} ykhhy”confahn‘K&ﬁe”
{“Jenny”, “Trip”}
{“KyliE”, “Trip”}

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{“Jenny,,} -

{*Kylie”} -y

{“Trip”} By
E

{“Jenny”, “Kylie”}
{“Jenny”, “Trip”}
{“Kylie”, “Trip”}
{“Jenny”, “Kylie”, “Trip”’}

What defines our subsets decision tree?

e Choose decision at each step (each level of the tree):
o Are we going to include a given element in our subset?

What defines our subsets decision tree?

e Choose decision at each step (each level of the tree):
o Are we going to include a given element in our subset?

e Explore options at each decision (branches from each node):
o Include element
o Don’tinclude element

What defines our subsets decision tree?

e Decision at each step (each level of the tree):
o Are we going to include a given element in our subset?

e Options at each decision (branches from each node):
o Include element
o Don’tinclude element

e Information we need to store along the way:

o The set you've built so far
o The remaining elements in the original set

Decision tree

Empty set

Decision tree

Don’t include Jenny

'

Empty set

Include Jenny

1

Decision tree

Don’t include Jenny

'

Empty set

Include Jenny

No Kylie

Kylie

Decision tree

Don’t include Jenny

'

Empty set

Include Jenny

No Kylie

Decision tree

Don’t include Jenny

'

No Kylie

Kylie

No Trip Trip

Empty set

Include Jenny

No Trip

No Kylie

Trip

No Trip ﬁa Trip

What defines our subsets decision tree?

e Decision at each step (each level of the tree):
o Are we going to include a given element in our subset?

e Options at each decision (branches from each node):
o Include element

o Don’tinclude element

e Information we need to store along the way:
o The set you've built so far

Decision tree

Don’tinclude Jenny | Empty set Include Jenny Remaining: {“Jenny”, “ Kylie”, “Trip”]

! !

No Kylie Kylie No Kytie n Ktie Remaining: {“Kylie”, “Trip”}

No Trip mi No Trip ‘a Trig‘ No Tri n TriE‘ No Trij T”E‘

Decision tree

Don'tinclude Jenny | Empty set Include Jenny Remaining: {“NiCk”, “Kylie”, “Trip”}

! !

‘ I ‘ n Remaining: {“Kylie”, “Trip”}

N«rmL 21 NofL ‘a 21 No Tri n Ei No Tri 31 Remaining:{“Trip”}
B || ®

Decision tree

Don'tinclude Jenny | Empty set

Include Jenny

!

No Kylie Kylie

!

No Kylie

n =

No Trj

Remaining: {“Nick”, “Kylie”, “Trip”}

No Trip TriE‘ No Trip m Trig‘ No Tri

Remaining: {“Kylie”, “Trip”}

Remaining: {“Trip”}

Remaining: {}

Decision tree

Don’t include Jenny

!

No Kylie Kylie

Empty set

Include Jenny

!

No Kylie

n =

No Trj

Remaining: {“Nick”, “Kylie”, “Trip”}

it

No Trip

: No people remaining to choose from!

Remaining: {“Kylie”, “Trip”}

Remaining: {“Trip”}

Remaining: {}

Decision tree

Don'tinclude Jenny | Empty set Include Jenny Remaining: {“NiCk”, “Kylie”, “Trip”}

! !

‘ I ‘ n Remaining: {“Kylie”, “Trip”}

N«rmL 21 NofL 21 No Tri n 21 No Tri 21 Remaining:{“Trip”}
B

nn H!! R Remaining: {}

: Pick someone in the set. Choose to

include or not include them.

Let’s code it!

Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we’re passing sets by reference and editing
them!

Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we’re passing sets by reference and editing
them!

string elem = remaining.first();

// remove this element from possible choices

remaining = remaining - elem;

listSubsetsHelper(remaining, chosen); // do not add elem to chosen
chosen = chosen + elem;

listSubsetsHelper(remaining, chosen); // add elem to chosen

chosen = chosen - elem;

// add this element back to possible choices

remaining = remaining + elem;

Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we’re passing sets by reference and editing
them!

string elem = remaining.first();
// remove this element from possible choices
remaining = remaining - elem;
C'Aoax'e listSubsetsHelper(remaining, chosen); // do not add elem to chosen
chosen = chosen + elem;
listSubsetsHelper(remaining, chosen); // add elem to chosen
chosen = chosen - elem;
// add this element back to possible choices
remaining = remaining + elem;

Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we’re passing sets by reference and editing

them!
string elem = remaining.first();
// remove this element from possible choices
remaining = remaining - elem;
éagpﬁgke listSubsetsHelper(remaining, chosen); // do not add elem to chosen
[f’ } chosen = chosen + elem;
par 7 listSubsetsHelper(remaining, chosen); // add elem to chosen

chosen = chosen - elem;
// add this element back to possible choices
remaining = remaining + elem;

Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we’re passing sets by reference and editing

them!
string elem = remaining.first();
// remove this element from possible choices
remaining = remaining - elem;
éagpﬁgke listSubsetsHelper(remaining, chosen); // do not add elem to chosen
chosen = chosen + elem;
6ba]7‘2j listSubsetsHelper(remaining, chosen); // cdd clem to chosen

chosen = chosen - elem;
// add this element back to possible choices
remaining = remaining + elem;

Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we’re passing sets by reference and editing
them!

string elem = remaining.first();
// remove this element from possible choices
remaining = remaining - elem;
é;gpﬁbit listSubsetsHelper(remaining, chosen); // do not add elem to chosen
chosen = chosen + elem;
listSubsetsHelper(remaining, chosen); // add elem to chosen
[;’.e. ahda} chosen = chosen - elem;
// add this element back to possible choices
remaining = remaining + elem;

(nchooce

Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we’re passing sets by reference and editing
them!

string elem = remaining.first();
) , // remove this element from possible choices

Without this remaining = remaining - elem;

g’te,b, we could listSubsetsHelper(remaining, chosen); // do not add elem to chosen
chosen = chosen + elem;

not ex/b/ore the listSubsetsHelper(remaining, chosen); // add elem to chosen

other ¢ide af chosen = chosen - elem;
// add this element back to possible choices

the f"ee remaining = remaining + elem;

Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we’re passing sets by reference and editing
them!

e It’s important to consider not only decisions and options at each decision, but
also to keep in mind what information you have to keep track of with each
recursive call. This might help you define your base case.

Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we’re passing sets by reference and editing
them!

e It’s important to consider not only decisions and options at each decision, but
also to keep in mind what information you have to keep track of with each
recursive call. This might help you define your base case.

e The subset problem contains themes we’ve seen in backtracking recursion:
o Building up solutions as we go down the decision tree
o Using a helper function to abstract away implementation details

Using backtracking recursion

e There are 3 main categories of problems that we can solve by using
backtracking recursion:

o We can find one specific solution to a problem or prove that one exists
o We can find the best possible solution to a given problem

e There are many, many examples of specific problems that we can solve,

including

Generating permutations
Generating subsets
Generating combinations
And many, many more

o O O O

Summary

Backtracking recursion: Exploring many possible solutions

Overall paradigm: choose/explore/unchoose

Two ways of doing it Three use cases for backtracking

e Choose explore undo 1. Generate/count all solutions
o Uses pass by reference; usually with (enumeration)

large data structures

o Explicit unchoose step by "undoing" 2. Find one solution (or prove
prior modifications to structure .

o E.g. Generating subsets (one set eXIStence)
passed around by reference to track 3. Pick one best solution
subsets)

e Copy edit explore

o Pass by value; usually when memory

constraints aren’t an issue

General examples of things you can do:
- Permutations

o Implicit unchoose step by virtue of - Subsets
making edits to copy - Combinations
o E.g. Building up a string over time - etc.

More Recursive Backtracking

